Hyperbolic flow by mean curvature

نویسندگان

  • Horacio G. Rotstein
  • Simon Brandon
  • Amy Novick-Cohen
چکیده

A hyperbolic flow by mean curvature equation, l t #cv"i, for the evolution of interfaces is studied. Here v, i and l t are the normal velocity, curvature and normal acceleration of the interface. A crystalline algorithm is developed for the motion of closed convex polygonal curves; such curves may exhibit damped oscillations and their shape appears to rotate during the evolutionary process. The motion of circular interfaces is also studied both analytically and numerically. ( 1999 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insufficient Convergence of Inverse Mean Curvature Flow on Asymptotically Hyperbolic Manifolds

We construct a solution to inverse mean curvature flow on an asymptotically hyperbolic 3-manifold which does not have the convergence properties needed in order to prove a Penrose–type inequality. This contrasts sharply with the asymptotically flat case. The main idea consists in combining inverse mean curvature flow with work done by Shi–Tam regarding boundary behavior of compact manifolds. As...

متن کامل

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

Mean Curvature Flow of Higher Codimension in Hyperbolic Spaces

where H(x, t) is the mean curvature vector of Ft(M) and Ft(x) = F (x, t). We call F : M × [0, T ) → F(c) the mean curvature flow with initial value F . The mean curvature flow was proposed by Mullins [17] to describe the formation of grain boundaries in annealing metals. In [3], Brakke introduced the motion of a submanifold by its mean curvature in arbitrary codimension and constructed a genera...

متن کامل

Hyperbolic mean curvature flow: Evolution of plane curves

In this paper we investigate the one-dimensional hyperbolic mean curvature flow for closed plane curves. More precisely, we consider a family of closed curves F : S × [0, T ) → R which satisfies the following evolution equation ∂F ∂t (u, t) = k(u, t) ~ N(u, t)− ▽ρ(u, t), ∀ (u, t) ∈ S1 × [0, T ) with the initial data F (u, 0) = F0(u) and ∂F ∂t (u, 0) = f(u) ~ N0, where k is the mean curvature an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999